Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
3.
Int J Environ Res Public Health ; 18(20)2021 10 09.
Article in English | MEDLINE | ID: covidwho-1460082

ABSTRACT

Following the coronavirus disease-2019 pandemic, this study aimed to evaluate the overall effects of remote blood pressure monitoring (RBPM) for urban-dwelling patients with hypertension and high accessibility to healthcare and provide updated quantitative summary data. Of 2721 database-searched articles from RBPM's inception to November 2020, 32 high-quality studies (48 comparisons) were selected as primary data for synthesis. A meta-analysis was undertaken using a random effects model. Primary outcomes were changes in office systolic blood pressure (SBP) and diastolic blood pressure (DBP) following RBPM. The secondary outcome was the BP control rate. Compared with a usual care group, there was a decrease in SBP and DBP in the RBPM group (standardized mean difference 0.507 (95% confidence interval [CI] 0.339-0.675, p < 0.001; weighted mean difference [WMD] 4.464 mmHg, p < 0.001) and 0.315 (CI 0.209-0.422, p < 0.001; WMD 2.075 mmHg, p < 0.001), respectively). The RBPM group had a higher BP control rate based on a relative ratio (RR) of 1.226 (1.107-1.358, p < 0.001). RBPM effects increased with increases in city size and frequent monitoring, with decreases in intervention duration, and in cities without medically underserved areas. RBPM is effective in reducing BP and in achieving target BP levels for urban-dwelling patients with hypertension.


Subject(s)
COVID-19 , Hypertension , Blood Pressure , Humans , Hypertension/epidemiology , SARS-CoV-2 , Urban Population
4.
Clin Hypertens ; 27(1): 11, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1249566

ABSTRACT

BACKGROUND: There have been concerns regarding the safety of renin-angiotensin-aldosterone-system (RAAS)-blocking agents including angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) during the coronavirus disease 2019 (COVID-19) pandemic. This study sought to evaluate the impact of hypertension and the use of ACEI/ARB on clinical severity in patients with COVID-19. METHODS: A total of 3,788 patients aged 30 years or older who were confirmed with COVID-19 with real time reverse transcription polymerase chain reaction were identified from a claims-based cohort in Korea. The primary study outcome was severe clinical events, a composite of intensive care unit admission, need for ventilator care, and death. RESULTS: Patients with hypertension (n = 1,190, 31.4 %) were older and had higher prevalence of comorbidities than those without hypertension. The risk of the primary study outcome was significantly higher in the hypertension group, even after multivariable adjustment (adjusted odds ratio [aOR], 1.67; 95 % confidence interval [CI], 1.04 to 2.69). Among 1,044 patients with hypertensive medical treatment, 782 (74.9 %) were on ACEI or ARB. The ACEI/ARB subgroup had a lower risk of severe clinical outcomes compared to the no ACEI/ARB group, but this did not remain significant after multivariable adjustment (aOR, 0.68; 95 % CI, 0.41 to 1.15). CONCLUSIONS: Patients with hypertension had worse COVID-19 outcomes than those without hypertension, while the use of RAAS-blocking agents was not associated with increased risk of any adverse study outcomes. The use of ACE inhibitors or ARBs did not increase the risk of adverse COVID-19 outcomes, supporting current guidance to continue these medications when indicated.

5.
Med Image Anal ; 72: 102105, 2021 08.
Article in English | MEDLINE | ID: covidwho-1240507

ABSTRACT

Chest computed tomography (CT) based analysis and diagnosis of the Coronavirus Disease 2019 (COVID-19) plays a key role in combating the outbreak of the pandemic that has rapidly spread worldwide. To date, the disease has infected more than 18 million people with over 690k deaths reported. Reverse transcription polymerase chain reaction (RT-PCR) is the current gold standard for clinical diagnosis but may produce false positives; thus, chest CT based diagnosis is considered more viable. However, accurate screening is challenging due to the difficulty in annotation of infected areas, curation of large datasets, and the slight discrepancies between COVID-19 and other viral pneumonia. In this study, we propose an attention-based end-to-end weakly supervised framework for the rapid diagnosis of COVID-19 and bacterial pneumonia based on multiple instance learning (MIL). We further incorporate unsupervised contrastive learning for improved accuracy with attention applied both in spatial and latent contexts, herein we propose Dual Attention Contrastive based MIL (DA-CMIL). DA-CMIL takes as input several patient CT slices (considered as bag of instances) and outputs a single label. Attention based pooling is applied to implicitly select key slices in the latent space, whereas spatial attention learns slice spatial context for interpretable diagnosis. A contrastive loss is applied at the instance level to encode similarity of features from the same patient against representative pooled patient features. Empirical results show that our algorithm achieves an overall accuracy of 98.6% and an AUC of 98.4%. Moreover, ablation studies show the benefit of contrastive learning with MIL.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , Pandemics , SARS-CoV-2 , Tomography, X-Ray Computed
6.
J Korean Med Sci ; 36(5): e46, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1059630

ABSTRACT

BACKGROUND: It is difficult to distinguish subtle differences shown in computed tomography (CT) images of coronavirus disease 2019 (COVID-19) and bacterial pneumonia patients, which often leads to an inaccurate diagnosis. It is desirable to design and evaluate interpretable feature extraction techniques to describe the patient's condition. METHODS: This is a retrospective cohort study of 170 confirmed patients with COVID-19 or bacterial pneumonia acquired at Yeungnam University Hospital in Daegu, Korea. The Lung and lesion regions were segmented to crop the lesion into 2D patches to train a classifier model that could differentiate between COVID-19 and bacterial pneumonia. The K-means algorithm was used to cluster deep features extracted by the trained model into 20 groups. Each lesion patch cluster was described by a characteristic imaging term for comparison. For each CT image containing multiple lesions, a histogram of lesion types was constructed using the cluster information. Finally, a Support Vector Machine classifier was trained with the histogram and radiomics features to distinguish diseases and severity. RESULTS: The 20 clusters constructed from 170 patients were reviewed based on common radiographic appearance types. Two clusters showed typical findings of COVID-19, with two other clusters showing typical findings related to bacterial pneumonia. Notably, there is one cluster that showed bilateral diffuse ground-glass opacities (GGOs) in the central and peripheral lungs and was considered to be a key factor for severity classification. The proposed method achieved an accuracy of 91.2% for classifying COVID-19 and bacterial pneumonia patients with 95% reported for severity classification. The CT quantitative parameters represented by the values of cluster 8 were correlated with existing laboratory data and clinical parameters. CONCLUSION: Deep chest CT analysis with constructed lesion clusters revealed well-known COVID-19 CT manifestations comparable to manual CT analysis. The constructed histogram features improved accuracy for both diseases and severity classification, and showed correlations with laboratory data and clinical parameters. The constructed histogram features can provide guidance for improved analysis and treatment of COVID-19.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Pneumonia, Bacterial/diagnostic imaging , Respiratory Distress Syndrome/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Algorithms , Artificial Intelligence , Cluster Analysis , Deep Learning , Female , Humans , Male , Middle Aged , Pattern Recognition, Automated , Reproducibility of Results , Republic of Korea/epidemiology , Respiratory Distress Syndrome/complications , Retrospective Studies , Severity of Illness Index , Support Vector Machine
7.
Sustainability ; 12(24):10287, 2020.
Article in English | MDPI | ID: covidwho-968613

ABSTRACT

This study investigates whether recognized accounts receivable (AR) factoring is more value relevant than disclosed AR factoring. After the adoption of the Korean International Financial Reporting Standards (K-IFRS), AR factoring is recognized as short-term debt, thus increasing firms’leverage ratio. Using cross-sectional equity valuation regressions, we find that recognized AR factoring is value relevant, unlike disclosed AR factoring. Moreover, the market value of equity and AR factoring are more significantly correlated in highly leveraged firms than in less-leveraged ones. Accounting data are important from the perspective of big data. In the accounting industry as well, professionals started realizing the implications of big data. The COVID-19 pandemic has created a health crisis and wreaked havoc in an already-fragile global economy. Although there is no way to predict exactly what the economic damage from the COVID-19 pandemic will be, there must be widespread agreement that it will have severe financial impact on every company. Global financial markets have suffered dramatic falls due to the pandemic, and highly leveraged companies are in serious need of financing. While diving deeper, sound debt management and debt transparency are critical to ensure debt sustainability. Thus, companies would be willing to use AR factoring in order to overcome this financial status. This study also shows that highly leveraged firms decrease AR factoring after K-IFRS adoption.

SELECTION OF CITATIONS
SEARCH DETAIL